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Motivation

2 / 28



Goal in MCMC

The goal is to estimate integrals with respect to a probability
measure via simulation with modern computation. This is crucial
for modern Bayesian inference.

For some real-valued function φ : X → R, estimate∫
X
φdΠ
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MCMC in the single-chain regime

Simulate realizations of a single Markov chain X0, . . . , Xt, . . . with
unique invariant distribution Π until convergence (approximate).

The marginal realizations stabilize to realizations from Π. Use the
empirical average to estimate an expectation:

1

T

T∑
s=1

φ(Xt+s) ≈
∫

X
φdΠ.
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Single-chain regime theoretical properties

Theoretically solid foundation
The dependence in the Markov chain restricts many
advantages of modern parallel computation
Knowing when the Markov chain converged is an extremely
challenging problem
Obtaining explicit and useful convergence rates is challenging

A generally long serial Markov chain path simulation
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The many-short-chains regime

Simulate realizations from multiple independent short Markov
chain paths Xm

0 , . . . , Xm
t for m = 1, . . . ,M and ensemble them.

Ensemble examples:
Take the average of X1

t , . . . , X
m
t

Take the average of averages
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Many-short-chains regime properties

Short Markov chain length = fast simulation
Parallel simulations able to utilize modern parallel compute

A possibly fast, parallel simulation

The bias can be large or even unknown due to the short
simulation length = estimate incorrectly
Many-short-chains has been used [Gelman and Rubin, 1992]
and debated, and criticized due to its weaknesses [Geyer,
1992].
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Contribution of this work

Construct an ensemble MCMC estimator with an error guarantee
in the many-short-chains regime.

i.e. short Markov chain simulations in parallel.
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Many-short-chains (MSC)
estimator

9 / 28



MSC estimator requirements

Let Y1, . . . , YN independently from an importance sampling
proposal
Construct an initial distribution for the Markov chains using
the self-normalized importance weights
Use independent Markov chains Xm

0 , Xm
1 , . . . , Xm

t , . . . for
m = 1, . . . ,M initialized with Xm

0 from this initial distribution.
An explicit set C (we will use a drift condition for this later).

Note: This initialization does not require normalizing constant of
Π.
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MSC estimator construction

τC is the first return time to the set C and

SτC (φ) =

{∑τC
k=1 φ(Xk) X0 ∈ C

0 X0 ̸∈ C.

The MSC estimator is the average over these independent sums of
Markov chains, that is,

SτC (φ) =
1

M

M∑
m=1

Sm
τC
(φ).
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Mean squared error analysis
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Geometric drift condition

There is a function V ≥ 1 and constants γ ∈ (0, 1) and K > 0
such that

E
[
V (Xt)

∣∣ Xt−1

]
≤ γV (Xt−1) +K.

A geometric drift condition ensures the Markov chain visits

C = {x ∈ X : V (x) ≤ R} (1)

for any R > K/(1− γ).
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Mean squared error analysis

Theorem
Under the geometric drift condition,

sup
|φ|≤

√
V

E
[
SτC (φ)−

∫
φdΠ

]2
≲

R+K

M(2− γR)2
+

(R+K)2
∫
wdΠ

N(1− γR)2

where γR > γ.

The actual constants are explicit and non-asymptotic
If V (·) ≥ ∥·∥22 can estimate the posterior mean
Does not require convergence analysis of the Markov chain
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MSC estimator properties

The drift condition ensures the Markov chain simulation is
short in length. Not always available e.g. Metropolis-Hastings.
Requires importance sampling proposal and drift condition, but
does not require convergence analysis
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MSC estimator concentration

Under uniformly bounded importance weights and a multiplicative
drift condition, there is a stronger sub-Gaussian concentration
inequality.
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Applications
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Toy example

Consider the autoregressive process

Xt = ρXt−1 +
√
1− ρ2ξt ξt ∼ N(0, I) independent

has invariant distribution N(0, I).
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MSC construction

Use the autoregressive process as the Markov chain
Use importance sampling proposal N(0, (1/2 + h)Id).
For any r > 1, define the set

Cr = {∥x∥22 ≤ rd}
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MSE error bound

If N,M sufficiently large, then for |φ| ≤ ∥·∥2,

SτCr
(φ) ≈ E[φ(Z)] Z ∼ N(0, I)

with high probability.
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Simulation result
Use N = 106 and M = 105 in dimension 2 to estimate the mean.
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Predicting cardiovascular disease

The aim is to predict cardiovascular disease from a data set
provided by the Cleveland Clinic [Detrano et al., 1989]. The data
consists of 303 patients with binary responses determining if
cardiovascular disease is present and 21 covariates on patient
characteristics.
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Bayesian logistic regression

Consider Bayesian logistic regression with a Gaussian prior

β ∼ N(0,Σ)

The Pólya-Gamma Gibbs sampler [Nicholas G. Polson and Windle,
2013] is popular but the convergence rate [Choi and Hobert, 2013]
can be problematic in moderate dimensions.
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MSC construction

Importance sampling proposal N(β∗
n, (1/2 + h)Σ) with

h ∈ (0, 1/2].
Marginal Pólya-Gamma Gibbs Markov chain (βt)t.
For any r > 1,

Cr = {∥β∥22 ≤ rL}. (2)

where L = ∥Σ∥22
∥∥XT (Y − 1/21d)

∥∥2
2
.

24 / 28



MSC error analysis

Using the MSC estimator with this Pólya-Gamma Gibbs sampler:

Proposition

Then for |φ| ≤ ∥·∥2,

MSE[SτCr
(φ)] ≲

rL

M(2− γr)2
+

[rL]2
(

1
2
√
2h

+
√

h
2

)d

N(1− γr)2

where γr ∈ (0, 1).

The bound is computable
Since the drift condition could be improved this will result 1
step runs of the Markov chain.
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Simulation setup

Use N = 107 and M = 106 to estimate the posterior mean for the
cardiovascular data. Use some reasonable tuning parameters and
prior choice.

Coefficients β1 indicating male versus female patients, β2 for the
number of major blood vessels colored by flouroscopy, and β3 for
resting blood pressure in mm/Hg on admission to the hospital.
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Simulation result
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Summary

Developed an estimator guaranteed in the many-short-chains
regime and error analysis that does not depend on convergence
of the Markov chain.
The bounds can have issues scaling to high dimensional
problems
The bounds appear useful compared to importance sampling
bounds for unbounded functions [Agapiou et al., 2017,
Theorem 2.3].
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