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Ideal setup
Choose a "good" tuning parameter γ depending on information
from the target, and simulate samples from a Markov process
until the marginal samples stabilize to samples from π.
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Tuning MCMC is hard

Problem: Tuning an MCMC algorithm is incredibly
di�cult and trial and error is computationally expensive
and wasteful.

Tune Run

Monitor

MCMC Simulation
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How I think of Adaptive MCMC

Try to make new MCMC algorithms that are easy to implement
for scientists not in this room without access to optimal tuning
parameters.
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Adaptive MCMC

Choose an adaptation plan Q ≡ (Qt)t (family of kernels) for
updating the tuning parameter using the history.

1. Sample γt+1 | history.
2. Sample state space Xt+1|γt+1, Xt

Examples. RWM adapting the covariance with the previous
history. A covariance using information with the target would
be ideal, but may not be readily available.
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Convergence in Adaptive Markov chain Monte Carlo

We need to burn-in the tuning parameters up to T and then
continue running t more times to converge as we would normally

T + t

Asymptotic results here [Roberts and Rosenthal, 2007].
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Motivation

How to design �good" adaptive algorithms ("good" adaptation
plans)? Are there optimal adaptation plans? etc.
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Motivation

Metropolis-Hastings with exponential target and independent
proposal

γ exp(−γx).

If we adapt with γ < 1, can expect geometric convergence

If γ > 1 (can't be too large), can expect polynomial
convergence

So we likely have a phase transition in the convergence of
adaptive MCMC when γ = 1 because of the tail behavior
change.
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Takeaways from this talk

Adapting a Markov process may not improve the tail behavior
enough, and the convergence can behave like a non-adapted
Markov process with a potentially poor tuning parameter choice.

Previous results eluded to this in speci�c examples
[Schmidler and Woodard, 2011].

Many adaptive algorithms are designed by adapting only on
a compact set.
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Intuition: tail mismatch
Find a function W ≥ 0 that is not integrable with π but
integrable with the adaptive process, then we have a tail
mismatch:

W ≥ r

L(Xt)

π ∝ 1/H−1
lower(t)

H−1
lower(t) is often only good for slower than geometric rates like

polynomial.
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Intuition: tail mismatch can be robust to perturbation

The previous plot can be robust to small perturbations.

W ≥ rW ≥ rϵ

L(Xt)

π
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Intuition: robust tail mismatch implication

We can �nd a set A where the volume

π(Aϵ) di�ers from L(Xt)(A)

where Aϵ is the ϵ−in�ation set.
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Lower bound

Theorem (Outline)

Under this setting, for any adaptation plan Q that maintains

this tail mismatch problem, we can �nd a δ

1

H−1
lower(t)

≲ PQ(∥Xt − Y ∥ > δ)

where H−1
lower.
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Upper bounds
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Conditions for upper bounds

We need some subgeometric drift and local coupling conditions
and a quantiative diminishing adaptation condition [Roberts
and Rosenthal, 2007]. An upper bound rate on the closeness of
the distributions of

Xt+1 | γt+1, Xt and Xt+1 | γt, Xt

uniformly in Xt.
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Total variation control

Theorem (Outline)

Under this setting, if the adaptation is fast, for ϵ > 0

∥∥L(X2 log(t/ϵ)+t)− π
∥∥
TV

≲
log(t/ϵ)

H−1
upper (t)

+ ϵ

Could replace this with a "Wasserstein distance", but the
lower bound won't change.
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Example: convergence characterization of adaptive RWM

More generally, the upper bound requires a balance of the
"adaptation burn-in time" and the convergence of the
underlying Markov process:

∥∥L(XT (t,ϵ)+t)− π
∥∥
TV

≲
T (t, ϵ)

H−1
upper (t)

+ ϵ

Should take into account information from the convergence
of the Markov process with the adaptation strategy.
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Example: convergence characterization of IMH

Proposition (Roughly)

If adaptation settles fast, adaptive IMH for the exponential

target is polynomial

n−b

with b in some range of values depending on the best in the lower

bound and worst tuning parameter choices in the upper bound.

Note: Might be useful for characterizing when the CLT will not
hold.
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Example: convergence characterization of adaptive RWM

Proposition (Roughly)

If adaptation settles fast and for certain targets with heavier

tails, adaptive RWM is subgeometric

exp [−bta]

with b in some range of values depending on the best and worst

tuning parameter choices.
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