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Introduction
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Setting

m High-dimensional target distribution IT on R?
m Large data of size n (e.g. Bayesian posteriors)
m Lebesgue density 7 > 0 on © C R?

Simulate a Markov chain for sufficiently long until samples

Ot,...,0: 171 are from II (approximately) and
=
— s) & 1I.
72 f0s) [t
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Metropolis-Hastings
Generate 6,0y = 6 ~ P'(0,) using a proposal Q(-,-), q(-,+) by

— w(0¢—1)q(0s—1,0})

0, if up < 0900y
041011 =
61, else

where 6;]0;_1 ~ Q(0;_1,-) and u; ~ Unif(0, 1).

Figure: Arianna Rosenbluth, Nicholas Metropolis, Keith Hastings, and
Luke Tierney

4/32



Drawbacks

m Requires choosing and tuning a proposal Q(-,-).
» Independent proposal
» Proposals 0, ~ N(up,c(0;—1), hC).
»> Random-walk proposals (RWM):
0y ~ N(0,—1,h1y)
» Discretize Langevin diffusions (MALA):
9,’5 ~ N(Gt,l + hV log(7r(9t,1))/2, hld)

m Can be unreliable if the proposal is chosen poorly.
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Trial and error

m Problem: Practitioners often require tuning proposals by trial
and error to avoid poor empirical performance.
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Drawbacks:

m Computationally intensive and time consuming.
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Contribution

We want to contribute to existing tools for choosing tuning
parameters:

m Optimal scaling for RWM, MALA Roberts et al. [1997],
Roberts and Rosenthal [1998]

m Adaptive algorithms Haario et al. [2001]

m Convergence analysis

» Challenging with limited result (Independence sampler, RWM
[Andrieu et al., 2022, Belloni and Chernozhukov, 2009]).
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Convergence in Wasserstein
Distances
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Why use Wasserstein?

We are interested in large problems:
m TV tends to scale poorly to large problems

m Develop lower bounds in Wasserstein distances used for large
problems
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Intuition: transportation distances

Optimally transport all the mass from one probability distribution
to the other with cost ¢(-,-).

Examples: ¢(¢,w') = Iy and ¢(0,w') = [|§/ — /|| A 1.
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Transportation distances

Let C (Pt(ﬁ, s H) be the set of couplings. The Wasserstein
distance is defined as

W, (PY(0,-),1I) = inf /0’,’d 0w
(PO, )10 =, jnf oy [ e g’ o)

Figure: Leonid Kantorovich, Leonid Vaserstein, Cédric Villani
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Examples of transportation distances

Standard definition:

Wiy (P(6..10) = __ int / 10 — || deco

EeC(pPt(0

Metrise strong convergence:

tg .\ — — : L ro
[P0, ) = 0|7, gec&?(fe,.),n)/le 4 dE(0, W)

Metrise weak convergence:

t . — . P A
Wi (P16, ), 10) gec(;?(fe’.)m/m |6 — || de(@, ")
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Wasserstein geometric ergodicity

Metropolis-Hastings is Wasserstein geometrically ergodic if for
every 0 € O,
Wa(P(6,),T1) < M(9)!
where
m p € (0,1) (convergence rate)
m M(-) (cost of an imperfect initialisation)
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Geometric Ergodicity Can be Slow to Converge

Convergence can be slow if the lower bound on pis bad i.e. p~ 1.
m Generated samples are not trustworthy

m Suggests unreliable estimators from the Markov chain
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Application of lower bounds

m Lower bounds give a rate function:
r( { problem size } , { tuning parameters } ):

m1—p<r({problem size } ,{ tuning parameters }) — 0 with
the problem size d,n.
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Applications of lower bounds

Use lower bounds on the convergence rates to aid practitioners in
understanding which tuning parameters may cause the algorithms
to fail in practice.

Drawbacks: Does not tell you when the algorithm performs well.

16 /32



Lower Bounds for the
Independence Sampler



Convergence rates in TV

Let €* = infy q(6)/7 (). For every 6 € ©,
Wiiat (P(0,),11) < [|P4(0, ) =Tl < (1= )"

m Under conditions, the rate is exact rate in total variation
[Wang, 2022] and the same for every initialisation 6.
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Exact convergence in the Wasserstein distance

Theorem (Proposition 1, Theorem 3, Brown and Jones [2021])
If the point 0* satisfies € = q(0*)/m(0*), then

Wiaa (P10, 1) = (1 =€) [ flo = 0] A 1dT1).

If w,q are locally Lipschitz continuous and bounded, then for any
0cO

HIn,144L”A1(13t(9,~),11)1/t =1-—¢€"

t—o0
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Generalise?

m Acceptance probability for independence sampler:
A(0) = P (Accept from proposal at 6 )

m Exact convergence rate for independence sampler: 1 — A(6*)

m Lower bound for general Metropolis-Hastings? Should be
roughly
1—p < A"
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General Lower Bounds

21/32



Lower bounds on the TV convergence rate

7(0)q(6,0")
Theorem (Theorem 1, 2 [Brown and Jones, 2022])

Acceptance probability: A(6) = [ [w A 1} q(0,0")de.

For any 0 € ©
1PA(8,) =T 7y = [1 - A@)]"-
If geometrically ergodic, then

1—p < inf A(0).
=y

m Method independent (e.g. drift and minorisation, coupling)
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Lower bounds for Wasserstein distances

Theorem (Theorem 4, 5 [Brown and Jones, 2022])

If w is bounded, then there is a Cy > 0 so every § € ©
1
W (P46, ), TT) > Co [1 — A(9)] () .
If Wasserstein geometrically ergodic, then

1— pa1 < inf A(6).

m Similar to total variation in high dimensions
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Application of lower bounds

m Use problematic point: Maximum of 7 is problematic: 7(6*)
is large

m Study the computational complexity: Lower bounds give
1-— pﬁ < A(6*) — 0 with the problem size d,n

m Practical estimate: A(6*) is simple to estimate with Monte
Carlo in practice
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Applications Under
Concentration



Lower bounds under concentration

Use general proposal 0, ~ N (pp,c(6¢-1), hC).

Proposition (Proposition 6, 8, [Brown and Jones, 2022])

Under concentration conditions and Wasserstein geometrically
ergodic, then for large (n,d,),

dn, S dn /2 9
L — @i = — 1
s = (m) det(C)1/2 (1)

m lim, 4,)—oc pn = 1 rapidly if C,h do not depend carefully
on n.
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Flat prior Bayesian logistic regression

Use RWM and consider i.i.d. data (Y;, X;); and flat prior Bayesian
logistic regression.

Theorem (Theorem 3 [Brown and Jones, 2022])

Under technical conditions and in fixed dimension d, w.p. 1, if
Wasserstein geometrically ergodic,

e 1\ 42
1—pii < (=) .

Can choose h « 1/n to avoid lim, p, = 1.
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Numerical simulation

m Use Monte Carlo to estimate lower bound

m Generate repeatedly 50 times artificial data with
(d,n) =€ {(10,100),...,(10,400)}
mh=.1,5/n1/n,.1/n

Log acceptance probability
&
>

Convergence rate lower bound

(10, 100) (10, 200) (10, 300) (10, 400) (10, 100) (10, 200) (10, 300) (10, 400)
The dimension and sample size: d, n The dimension and sample size: d, n
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Comparison to Spectral
Methods



Comparison to spectral methods

Let P be any Markov operator on a metric space (£, d) reversible
with respect to II.

Proposition (Proposition 8 [Brown and Jones, 2022], [Hairer
et al., 2014])

For every dyu/dIl € L*(I), there is a p € (0,1)

Want (WP 1) < Mypt <= ||pP! — 10|, < Myp".

Weak convergence rate p <= TV convergence rate p
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Spectral method lower bound

Proposition (Proposition 8 [Brown and Jones, 2022])

Initializing at v and A(-) is upper semicontinuous, then

1—p < inf A(0).
=y
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Summary

[m] ey =]
[=]

m Developed lower bounds for Metropolis-Hastings in
Wasserstein distances for large problem sizes.

m Practical applications to tuning Metropolis-Hastings.

m More examples not presented here.
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