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Introduction
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Setting

High-dimensional target distribution Π on Rd

Large data of size n (e.g. Bayesian posteriors)
Lebesgue density π > 0 on Θ ⊆ Rd

Simulate a Markov chain for sufficiently long until samples
θt, . . . , θt+T−1 are from Π (approximately) and

1

T

T−1∑
s=0

f(θt+s) ≈
∫

fdΠ.
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Metropolis-Hastings
Generate θt|θ0 = θ ∼ P t(θ, ·) using a proposal Q(·, ·), q(·, ·) by

θt|θt−1 =

{
θ′t, if ut ≤ π(θ′t)q(θ

′
t,θt−1)

π(θt−1)q(θt−1,θ′t)
∧ 1

θt−1, else

where θ′t|θt−1 ∼ Q(θt−1, ·) and ut ∼ Unif(0, 1).

Figure: Arianna Rosenbluth, Nicholas Metropolis, Keith Hastings, and
Luke Tierney
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Drawbacks

Requires choosing and tuning a proposal Q(·, ·).
▶ Independent proposal
▶ Proposals θ′t ∼ N(µh,C(θt−1), hC).

▶ Random-walk proposals (RWM):
θ′t ∼ N(θt−1, hId)

▶ Discretize Langevin diffusions (MALA):
θ′t ∼ N(θt−1 + h∇ log(π(θt−1))/2, hId)

Can be unreliable if the proposal is chosen poorly.
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Trial and error

Problem: Practitioners often require tuning proposals by trial
and error to avoid poor empirical performance.

Tune Run

Monitor

Algorithm

Drawbacks:
Computationally intensive and time consuming.
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Contribution

We want to contribute to existing tools for choosing tuning
parameters:

Optimal scaling for RWM, MALA Roberts et al. [1997],
Roberts and Rosenthal [1998]
Adaptive algorithms Haario et al. [2001]
Convergence analysis
▶ Challenging with limited result (Independence sampler, RWM

[Andrieu et al., 2022, Belloni and Chernozhukov, 2009]).
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Convergence in Wasserstein
Distances
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Why use Wasserstein?

We are interested in large problems:
TV tends to scale poorly to large problems
Develop lower bounds in Wasserstein distances used for large
problems
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Intuition: transportation distances

θ′ ω′

P t(θ, ·) Π

c(θ′, ω′)

Optimally transport all the mass from one probability distribution
to the other with cost c(·, ·).

Examples: c(θ′, ω′) = Iθ′ ̸=ω′ and c(θ′, ω′) = ∥θ′ − ω′∥ ∧ 1.
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Transportation distances
Let C

(
P t(θ, ·),Π

)
be the set of couplings. The Wasserstein

distance is defined as

Wc

(
P t(θ, ·),Π

)
= inf

ξ∈C(P t(θ,·),Π)

∫
c(θ′, ω′)dξ(θ′, ω′)

Figure: Leonid Kantorovich, Leonid Vaserštĕın, Cédric Villani
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Examples of transportation distances

Standard definition:

W∥·∥
(
P t(θ, ·),Π

)
= inf

ξ∈C(P t(θ,·),Π)

∫ ∥∥θ′ − ω′∥∥ dξ(θ′, ω′)

Metrise strong convergence:∥∥P t(θ, ·)−Π
∥∥

TV = inf
ξ∈C(P t(θ,·),Π)

∫
Iθ′ ̸=ω′dξ(θ′, ω′)

Metrise weak convergence:

W1∧∥·∥
(
P t(θ, ·),Π

)
= inf

ξ∈C(P t(θ,·),Π)

∫
1 ∧

∥∥θ′ − ω′∥∥ dξ(θ′, ω′)
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Wasserstein geometric ergodicity

Metropolis-Hastings is Wasserstein geometrically ergodic if for
every θ ∈ Θ,

Wc(P
t(θ, ·),Π) ≤ M(θ)ρt

where
ρ ∈ (0, 1) (convergence rate)
M(·) (cost of an imperfect initialisation)
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Geometric Ergodicity Can be Slow to Converge

Convergence can be slow if the lower bound on ρ is bad i.e. ρ ≈ 1.
Generated samples are not trustworthy
Suggests unreliable estimators from the Markov chain
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Application of lower bounds

Lower bounds give a rate function:
r( { problem size } , { tuning parameters } ):
1− ρ ≤ r( { problem size } , { tuning parameters }) → 0 with
the problem size d, n.
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Applications of lower bounds

Use lower bounds on the convergence rates to aid practitioners in
understanding which tuning parameters may cause the algorithms
to fail in practice.

Drawbacks: Does not tell you when the algorithm performs well.
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Lower Bounds for the
Independence Sampler
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Convergence rates in TV

Let ϵ∗ = infθ q(θ)/π(θ). For every θ ∈ Θ,

W∥·∥∧1
(
P t(θ, ·),Π

)
≤

∥∥P t(θ, ·)−Π
∥∥

TV ≤ (1− ϵ∗)t.

Under conditions, the rate is exact rate in total variation
[Wang, 2022] and the same for every initialisation θ.
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Exact convergence in the Wasserstein distance

Theorem (Proposition 1, Theorem 3, Brown and Jones [2021])

If the point θ∗ satisfies ϵ∗ = q(θ∗)/π(θ∗), then

W∥·∥∧1
(
P t(θ∗, ·),Π

)
= (1− ϵ∗)t

∫
∥ω − θ∗∥ ∧ 1dΠ(ω).

If π, q are locally Lipschitz continuous and bounded, then for any
θ ∈ Θ

lim
t→∞

W∥·∥∧1(P
t(θ, ·),Π)1/t = 1− ϵ∗.
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Generalise?

Acceptance probability for independence sampler:

A(θ) = P (Accept from proposal at θ )

Exact convergence rate for independence sampler: 1−A(θ∗)

Lower bound for general Metropolis-Hastings? Should be
roughly

1− ρ ≤ A(θ∗)

20 / 32



General Lower Bounds
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Lower bounds on the TV convergence rate

Acceptance probability: A(θ) =
∫ [

π(θ′)q(θ′,θ)
π(θ)q(θ,θ′) ∧ 1

]
q(θ, θ′)dθ.

Theorem (Theorem 1, 2 [Brown and Jones, 2022])

For any θ ∈ Θ ∥∥P t(θ, ·)−Π
∥∥

TV ≥ [1−A(θ)]t .

If geometrically ergodic, then

1− ρ ≤ inf
θ∈Θ

A(θ).

Method independent (e.g. drift and minorisation, coupling)
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Lower bounds for Wasserstein distances

Theorem (Theorem 4, 5 [Brown and Jones, 2022])

If π is bounded, then there is a C0 > 0 so every θ ∈ Θ

W∥·∥(P
t(θ, ·),Π) ≥ C0 [1−A(θ)]t(1+

1
d) .

If Wasserstein geometrically ergodic, then

1− ρ
d

d+1 ≤ inf
θ∈Θ

A(θ).

Similar to total variation in high dimensions
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Application of lower bounds

Use problematic point: Maximum of π is problematic: π(θ∗)
is large
Study the computational complexity: Lower bounds give
1− ρ

d
d+1 ≤ A(θ∗) → 0 with the problem size d, n

Practical estimate: A(θ∗) is simple to estimate with Monte
Carlo in practice
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Applications Under
Concentration
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Lower bounds under concentration

Use general proposal θ′t ∼ N(µh,C(θt−1), hC).

Proposition (Proposition 6, 8, [Brown and Jones, 2022])

Under concentration conditions and Wasserstein geometrically
ergodic, then for large (n, dn),

1− ρ
dn

dn+1
n ≤

(
λ0

nh

)dn/2 2

det(C)1/2
. (1)

lim(n,dn)→∞ ρn = 1 rapidly if C, h do not depend carefully
on n.
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Flat prior Bayesian logistic regression

Use RWM and consider i.i.d. data (Yi, Xi)i and flat prior Bayesian
logistic regression.

Theorem (Theorem 3 [Brown and Jones, 2022])

Under technical conditions and in fixed dimension d, w.p. 1, if
Wasserstein geometrically ergodic,

1− ρ
d

d+1
n ≲

(
1

nh

)d/2

.

Can choose h ∝ 1/n to avoid limn ρn = 1.

27 / 32



Numerical simulation

Use Monte Carlo to estimate lower bound
Generate repeatedly 50 times artificial data with
(d, n) =∈ {(10, 100), . . . , (10, 400)}
h = .1, 5/n, 1/n, .1/n
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Comparison to Spectral
Methods
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Comparison to spectral methods

Let P be any Markov operator on a metric space (Ω, d) reversible
with respect to Π.

Proposition (Proposition 8 [Brown and Jones, 2022], [Hairer
et al., 2014])

For every dµ/dΠ ∈ L2(Π), there is a ρ ∈ (0, 1)

Wd∧1
(
µP t,Π

)
≤ Mµρ

t ⇐⇒
∥∥µP t −Π

∥∥
TV ≤ Mµρ

t.

Weak convergence rate ρ ⇐⇒ TV convergence rate ρ
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Spectral method lower bound

Proposition (Proposition 8 [Brown and Jones, 2022])

Initializing at µ and A(·) is upper semicontinuous, then

1− ρ ≤ inf
θ∈Θ

A(θ).
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Summary

Developed lower bounds for Metropolis-Hastings in
Wasserstein distances for large problem sizes.
Practical applications to tuning Metropolis-Hastings.
More examples not presented here.
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