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Setting

We have a target distribution Π on Rd possibly depending on data
of size n (e.g. Bayesian posteriors) with Lebesgue density π with
support Θ ⊆ Rd.

We want to generate representative samples θ1, . . . , θT from Π to
approximate expectations (e.g. predictions and inference in
Bayesian statistics)

1

T

T∑
t=1

g(θt) ≈
∫

g(θ)π(θ)dθ.
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Bayesian Applications

Consider the Bayesian model

θ ∼ π0

X1, Y1, . . . , Xn, Yn|θ ∼ pn,θ(·)

Observe x1, y1, . . . , xn, yn and the Bayesian posterior density

πn(θ) ∝ π0(θ)pn,θ(x1, y1, . . . , xn, yn).

Often the density is intractable and the normalizing constant is
difficult to approximate.

Example:
Bayesian GLM’s (i.e. logistic regression)

3 / 34



Difficulties in Sampling

Independent sampling methods are infeasible for modern
complex target distributions.
▶ Inverting the distribution function / transformation methods

(e.g Normal distributions)
▶ Rejection sampling (Gamma distributions, etc)
▶ Normalizing constant of π is often unknown (difficult for

importance sampling)

MCMC approach: Simulate a Markov chain for sufficiently long
with stationary distribution Π.

Main concern: How long do we need to simulate the Markov
chain?

4 / 34



Accept-reject-based Markov chains

Generate θt|θ0 ∼ P t(θ0, ·) in discrete-time using a proposal Q(·, ·)
by

θt|θt−1 =

{
θ′t, if ut ≤ a(θt−1, θ

′
t)

θt−1, else

where θ′t|θt−1 ∼ Q(θt−1, ·) and ut ∼ Unif(0, 1).

Choose a(·, ·) in a way so Π is invariant (not necessarily reversible).

Examples: Metropolis-Hastings [Metropolis et al., 1953, Hastings,
1970, Tierney, 1998], Barker’s Barker [1964], non-reversible
Metropolis-Hastings Bierkens [2015]
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Metropolis-Hastings
If Q(·, ·) with transition density q(·, ·), Metropolis-Hastings:

a(θt−1, θ
′
t) =

π (θ′t) q (θ
′
t, θt−1)

π (θt−1) q (θt−1, θ′t)
∧ 1

Optimal in a Peskun sense [Tierney, 1998].

Figure: Arianna Rosenbluth, Nicholas Metropolis, Keith Hastings, and
Luke Tierney
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Drawbacks

Drawbacks:
▶ Requires choosing an acceptance function a(·, ·).
▶ Requires choosing and tuning a proposal Q(·, ·).

▶ Independent proposal
▶ Random-walk proposals (RWM): θ′t ∼ N(θt−1, hId)
▶ Discretize Langevin diffusions (MALA):

θ′t ∼ N(θt−1 + h∇ log(π(θt−1))/2, hId)

▶ Can be unreliable if the proposal is chosen poorly.
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The Problem

Problem: Practitioners often require tuning proposals by trial and
error to avoid poor empirical performance in many applications.

We want to contribute to existing tools for choosing tuning
parameters:

Optimal scaling for RWM, MALA Roberts et al. [1997],
Roberts and Rosenthal [1998]
Adaptive algorithms Haario et al. [2001]
Convergence analysis
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Trial and Error

Trial and error: Tune the algorithm, run the algorithm,
monitor acceptances, and restart if acceptances are low.

Tune Run

Monitor

Algorithm

Drawbacks:
Computationally intensive and time consuming.
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Convergence Rate Upper bounds

Recent interest in (geometric) convergence rate upper bounds for
MCMC algorithms in terms of the problem size d, n [Belloni and
Chernozhukov, 2009, Ekvall and Jones, 2021, Johndrow et al.,
2019, Qin and Hobert, 2019, Rajaratnam and Sparks, 2015, Yang
et al., 2016].

Also an interest in new coupling techniques in Wasserstein
distances since they appear to scale better in high dimensions
[Hairer et al., 2014, Qin and Hobert, 2019, 2021].
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Difficulties for Convergence Rate Upper Bounds

Difficulties: Explicit convergence rates for Metropolis-Hastings in
TV or Wasserstein is a challenging problem and the convergence
rates are largely unknown [Jarner and Hansen, 2000, Hairer et al.,
2014].

Some mixing time bounds and recent work in the area [Dwivedi
et al., 2018, Andrieu et al., 2022].
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Convergence Rate Lower bounds

Use lower bounds on the convergence rates to aid practitioners in
understanding which tuning parameters may cause the algorithms
to fail produce a representative sample in an available number of
iterations in terms of d, n.

Drawbacks: Does not tell you when the algorithm performs well.

Related literature: Exact rates for independence samplers [Wang,
2022, Brown and Jones, 2021]. Necessary conditions for geometric
ergodicity [Roberts and Tweedie, 1996].
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Geometric Ergodicity in TV and
Wasserstein Distances
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Intuition: Transportation Distances

θ′ ω′

P t(θ, ·) Π

c(θ′, ω′)

Optimally transport all the mass from one probability distribution
to the other with cost c(·, ·).

Examples: c(θ′, ω′) = Iθ′ ̸=ω′ and c(θ′, ω′) = ∥θ′ − ω′∥.
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Transportation Distances
Let C

(
P t(θ, ·),Π

)
be the set of couplings. The Wasserstein

distance is defined as

Wp
∥·∥

(
P t(θ, ·),Π

)
=

(
inf

ξ∈C(P t(θ,·),Π)

∫ ∥∥θ′ − ω′∥∥p dξ(θ′, ω′)

)1/p

in comparison to∥∥P t(θ, ·)−Π
∥∥

TV = inf
ξ∈C(P t(θ,·),Π)

∫
Iθ′ ̸=ω′dξ(θ′, ω′)

Figure: Leonid Kantorovich, Leonid Vaserštĕın, Cédric Villani
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Geometric Ergodicity

An accept-reject-based Markov chain is (ρ,M)-geometrically
ergodic if for ρ ∈ (0, 1) and a function M(·), we have for every
initialization θ ∈ Θ,∥∥P t(θ, ·)−Π

∥∥
TV ≤ M(θ)ρt

and (∥·∥ , p, ρ,M)-geometrically ergodic if

Wp
∥·∥(P

t(θ, ·),Π) ≤ M(θ)ρt.

Motivation: Upper bounds on convergence rates in Wasserstein
distances tend to scale better in large problem sizes [Hairer et al.,
2014, Qin and Hobert, 2019].
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Geometric Ergodicity Can be Slow to Converge

Convergence can be slow if ρ ≈ 1.
Generated samples are not trustworthy
Suggests unreliable estimators from the Markov chain
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Lower Bounds
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Lower bounds on the TV Convergence Rate

Theorem (Theorem 1, 2 [Brown and Jones, 2022])

For any θ ∈ Θ ∥∥P t(θ, ·)−Π
∥∥

TV ≥ [1−A(θ)]t

where A(θ) =
∫
a(θ, θ′)Q(θ, dθ′). If (ρ,M)-geometrically ergodic

so ∥∥P t(θ, ·)−Π
∥∥

TV ≤ M(θ)ρt,

then
1− inf

θ∈Θ
A(θ) ≤ ρ

Method independent (e.g. drift and minorization, coupling)
Does not require reversiblility
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Comparing Algorithms

If P is (ρ,M)-geometrically ergodic and A(θ) ≤ AMH(θ) (Peskun
ordered) where AMH is the version for Metropolis-Hastings, then

1− inf
θ∈Θ

AMH(θ) ≤ ρ.
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Lower Bounds for Wasserstein Distances

Theorem (Theorem 4, 5 [Brown and Jones, 2022])

If π is bounded, then there is a Cd,π > 0 so every θ ∈ Θ

Wp
∥·∥(P

t(θ, ·),Π) ≥ Cd,π [1−A(θ)]t(1+
1
d) .

If (∥·∥ , p, ρ,M)-geometrically ergodic so

Wp
∥·∥(P

t(θ, ·),Π) ≤ M(θ)ρt,

then
1− inf

θ∈Θ
A(θ) ≤ ρ

d
d+1 .

Similar to total variation in high dimensions
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The Approach

Find problematic point: The maximum of the target density
θ∗ can be a problematic for Metropolis-Hastings.
Study the computational complexity: Study how
A(θ∗) → 0 with the problem size d, n.
Use lower bounds: Lower bounds in TV give
1− ρ ≤ A(θ∗) → 0 with the problem size d, n.

Focus on M-H and focus on TV since Wasserstein will be similar.
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Applications Under
Concentration
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Application: RWM for Log-concave targets

Consider π ∝ exp(−f) and suppose M-H with RWM proposal
θ′t ∼ N(θt−1, hId) is (ρ,M)-geometrically ergodic.

Corollary (Corollary 1, 2 [Brown and Jones, 2022])

If f(·)− 1
2ξ ∥·∥

2
2 is convex on Rd,

1− ρ ≤ 1

(h/ξ + 1)d/2
.

Need to choose h ∝ ξ/d as d → ∞ to avoid ρ → 1

Many examples: Bayesian GLM with Gaussian priors
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Example: Bayesian Logistic Regression with Zellner’s g-prior

Consider the posterior Πn with i.i.d. data (Yi, Xi)i

Yi|Xi, β ∼ Bern
(
sigmoid(XT

i β)
)

β ∼ Nd

(
0, g

(
XTX

)−1
)

Assume (Xi,j)i,j are i.i.d. random variables with zero mean, unit
variance, and a finite fourth moment.

Suppose M-H is (ρn,Mn) geometrically ergodic each n with a
RWM proposal θ′t ∼ N(θt−1, hId).
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Example: Bayesian Logistic Regression with Zellner’s g-prior

Proposition (Proposition 5 [Brown and Jones, 2022])

Suppose n → ∞ with dn/n → γ ∈ (0, 1). Then w.p. 1 and large n,

1− ρn ≤ 1(
hn(1−√

γ)2

2g + 1
)dn/2

.

Choose h ∝ 1/(dn) or limn,dn ρn = 1 can be rapid!
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Numerical Simulation

Generate repeatedly 50 times artificial data with increasing
dimensions d, n = 4d: (d, n) ∈ {(2, 8), ..., (14, 56)}.
Use optimization and Monte Carlo to estimate A(β∗

n) and
lower bounds.
h = .6, 2.382/d, 1/(dn).
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More General Lower Bounds Under Concentration

Suppose conditions (roughly speaking) on πn:
local λ−1

0 -strongly convex condition
strict maximum
sufficient tail decay

Suppose M-H with general proposal θ′t ∼ N(µ(θt−1), hC) (i.e.
RWM, MALA, Riemannian manifold MALA [Girolami and
Calderhead, 2011]) is (ρn,Mn)-geometrically ergodic for each n.
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Lower Bounds Under Concentration

Proposition (Proposition 6, 8, [Brown and Jones, 2022])

Under conditions on πn and dn ≤ nκ, κ ∈ (0, 1), then for large
(n, dn),

1− ρn ≤
(
λ0

nh

)dn/2 2

det(C)1/2
. (1)

For a large class of proposals, if h,C do not depend
carefully on n, then lim(n,dn)→∞ ρn = 1 rapidly!
Similar bound holds for any bounded proposal.
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Application: Flat prior Bayesian logistic regression
Consider πn for the model with i.i.d. data (Yi, Xi)i with ∥Xi∥2 ≤ 1
w.p. 1

Yi|Xi, β ∼ Bern
(
sigmoid(XT

i β)
)

β ∝ 1

Suppose M-H with RWM proposal θ′t ∼ N(θt−1, hId) is
(ρn,Mn)-geometrically ergodic.

Theorem (Theorem 3 [Brown and Jones, 2022])

In fixed dimension d and under conditions so the target exists [Chen
and Shao, 2000] and the MLE is consistent w.p. 1 and XT

i u ̸= 0 if
u ̸= 0. There is a λ0 > 0 such that w.p. 1, for large n,

1− ρn ≤ 2

(
λ0

nh

)d/2

.

Can choose h ∝ 1/n to avoid limn ρn = 1.
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Numerical Simulation

Generate repeatedly 50 times artificial data with
(d, n) =∈ {(10, 100), . . . , (10, 400)}.
h = .1, 5/n, 1/n, .1/n
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Comparison to Spectral
Methods
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Comparison to Spectral Methods

Proposition (Proposition, Proposition 8 [Brown and Jones,
2022])

If P is reversible and there is a ρ ∈ (0, 1), for every µ with
dµ/dΠ ∈ L2(Π), there is a Mµ > 0 such that

W1
∥·∥∧1

(
µP t,Π

)
≤ Mµρ

t.

If A(·) is upper semicontinuous, then

1− inf
θ∈Θ

A(θ) ≤ ρ.

Based on previous results [Hairer et al., 2014]
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Summary

Choose tuning parameters carefully!

Manuscript is on arXiv (submitted to Annals of Statistics):
https://arxiv.org/abs/2212.05955

Developed similar general lower bounds in both total
variation and Wasserstein distances in terms of the acceptance
probability.
Studied applications in Bayesian logistic regression for
choosing tuning parameters which scale to large problem sizes
to avoid the convergence rate rapidly tending to 1.
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