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Setting

We have a target distribution II on R? possibly depending on data
of size n (e.g. Bayesian posteriors) with Lebesgue density 7 with
support © C R

We want to generate representative samples 61, ...,07 from II to
approximate expectations (e.g. predictions and inference in
Bayesian statistics)
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Bayesian Applications

Consider the Bayesian model

0 ~ mp
Xl,Yl, Ce ,Xn,Yn‘g an’g(-)

Observe x1,41, ..., Zn, y, and the Bayesian posterior density

7Tn(9) X WO(G)pnﬂ(IEl? Y, ..., Tn, ?/n)

Often the density is intractable and the normalizing constant is
difficult to approximate.

Example:

m Bayesian GLM's (i.e. logistic regression)
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Difficulties in Sampling

m Independent sampling methods are infeasible for modern
complex target distributions.
» Inverting the distribution function / transformation methods
(e.g Normal distributions)
> Rejection sampling (Gamma distributions, etc)
> Normalizing constant of 7 is often unknown (difficult for
importance sampling)

MCMC approach: Simulate a Markov chain for sufficiently long
with stationary distribution TI.

Main concern: How long do we need to simulate the Markov
chain?
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Accept-reject-based Markov chains

Generate 6;6 ~ P*(6p, ) in discrete-time using a proposal Q(-,-)
by

0, if uy < a(f—1,0,
9t|9t—1 _ ) IT Ut _&( t—1, t)
0;_1, else

where 0;|0,_1 ~ Q(6;—1,-) and u; ~ Unif(0,1).
Choose a(-,-) in a way so II is invariant (not necessarily reversible).
Examples: Metropolis-Hastings [Metropolis et al., 1953, Hastings,

1970, Tierney, 1998], Barker's Barker [1964], non-reversible
Metropolis-Hastings Bierkens [2015]
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Metropolis-Hastings

If Q(-,-) with transition density ¢(-,-), Metropolis-Hastings:

7 (0;) q (0}, 0t 1)
7 (0i—1) q (0i—1,06;)

Optimal in a Peskun sense [Tierney, 1998].

a(@t_l,ﬁg) = A1l

Figure: Arianna Rosenbluth, Nicholas Metropolis, Keith Hastings, and
Luke Tierney
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Drawbacks

m Drawbacks:
» Requires choosing an acceptance function a(-,-).
» Requires choosing and tuning a proposal Q(-,-).
» Independent proposal
» Random-walk proposals (RWM): 0; ~ N(0:—1,hlq)
» Discretize Langevin diffusions (MALA):
9,/5 ~ N(et_l + hV log(Tr(Ht_1))/2, h[d)

» Can be unreliable if the proposal is chosen poorly.
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The Problem

Problem: Practitioners often require tuning proposals by trial and
error to avoid poor empirical performance in many applications.

We want to contribute to existing tools for choosing tuning
parameters:

m Optimal scaling for RWM, MALA Roberts et al. [1997],
Roberts and Rosenthal [1998]

m Adaptive algorithms Haario et al. [2001]

m Convergence analysis
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Trial and Error

m Trial and error: Tune the algorithm, run the algorithm,
monitor acceptances, and restart if acceptances are low.
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Drawbacks:

m Computationally intensive and time consuming.
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Convergence Rate Upper bounds

Recent interest in (geometric) convergence rate upper bounds for
MCMC algorithms in terms of the problem size d, n [Belloni and
Chernozhukov, 2009, Ekvall and Jones, 2021, Johndrow et al.,
2019, Qin and Hobert, 2019, Rajaratnam and Sparks, 2015, Yang
et al., 2016].

Also an interest in new coupling techniques in Wasserstein
distances since they appear to scale better in high dimensions
[Hairer et al., 2014, Qin and Hobert, 2019, 2021].
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Difficulties for Convergence Rate Upper Bounds

Difficulties: Explicit convergence rates for Metropolis-Hastings in
TV or Wasserstein is a challenging problem and the convergence
rates are largely unknown [Jarner and Hansen, 2000, Hairer et al.,
2014].

Some mixing time bounds and recent work in the area [Dwivedi
et al., 2018, Andrieu et al., 2022].
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Convergence Rate Lower bounds

Use lower bounds on the convergence rates to aid practitioners in
understanding which tuning parameters may cause the algorithms
to fail produce a representative sample in an available number of
iterations in terms of d, n.

Drawbacks: Does not tell you when the algorithm performs well.
Related literature: Exact rates for independence samplers [Wang,

2022, Brown and Jones, 2021]. Necessary conditions for geometric
ergodicity [Roberts and Tweedie, 1996].
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Geometric Ergodicity in TV and
Wasserstein Distances



Intuition: Transportation Distances

Optimally transport all the mass from one probability distribution
to the other with cost ¢(-,-).

Examples: ¢(¢/,w’) = Iy and ¢(0',0') = |6/ — /.
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Transportation Distances

Let C (P(6,-),1I) be the set of couplings. The Wasserstein
distance is defined as

wiy oo = (L pe [l -wpaes)

in comparison to

t D) — — : L A
P46, =Ty = _ ot [ Tordg(®')

Figure: Leonid Kantorovich, Leonid Vaserstein, Cédric Villani
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Geometric Ergodicity

An accept-reject-based Markov chain is (p, M )-geometrically
ergodic if for p € (0,1) and a function M (-), we have for every
initialization 6 € ©,

P46, 1]y < M@
and (|||, p, p, M )-geometrically ergodic if

Wp

P (P9, ),T1) < M(0)'.

Motivation: Upper bounds on convergence rates in Wasserstein
distances tend to scale better in large problem sizes [Hairer et al.,
2014, Qin and Hobert, 2019].
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Geometric Ergodicity Can be Slow to Converge

Convergence can be slow if p ~ 1.
m Generated samples are not trustworthy

m Suggests unreliable estimators from the Markov chain
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| ower Bounds
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Lower bounds on the TV Convergence Rate
Theorem (Theorem 1, 2 [Brown and Jones, 2022])
For any § € ©

HPt(ea ) - HHTV > [1 - A(e)]t

where A(0) = [ a(6,0)Q(6,d0"). If (p, M)-geometrically ergodic
so

Hpt(‘gv ) - HHTV < M(G)pta
then

1 —inf A(9) <
ml A=

m Method independent (e.g. drift and minorization, coupling)

m Does not require reversiblility
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Comparing Algorithms

If Pis (p, M)-geometrically ergodic and A(0) < Ay (6) (Peskun
ordered) where A,rp is the version for Metropolis-Hastings, then

1—inf A 0) < p.
jes A0y =0
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Lower Bounds for Wasserstein Distances

Theorem (Theorem 4, 5 [Brown and Jones, 2022])

If w is bounded, then there is a Cyqr > 0 so every § € ©

WE(P(0,), D) = Ce [ — AO)( ).

If (||| , p, p, M )-geometrically ergodic so

WP

H.||(Pt(9> ), 1) < M(O)pt,

then

m Similar to total variation in high dimensions
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The Approach

m Find problematic point: The maximum of the target density
0* can be a problematic for Metropolis-Hastings.

m Study the computational complexity: Study how
A(0*) — 0 with the problem size d, n.

m Use lower bounds: Lower bounds in TV give
1 —p < A(6*) — 0 with the problem size d, n.

Focus on M-H and focus on TV since Wasserstein will be similar.
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Applications Under
Concentration



Application: RWM for Log-concave targets

Consider 7 o< exp(—f) and suppose M-H with RWM proposal
0, ~ N(6;—1,hly) is (p, M)-geometrically ergodic.

Corollary (Corollary 1, 2 [Brown and Jones, 2022])

Iff(-) — é HH% is convex on R<,

1
LTPS G

m Need to choose h «x £/d as d — co to avoid p — 1

m Many examples: Bayesian GLM with Gaussian priors
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Example: Bayesian Logistic Regression with Zellner's g-prior

Consider the posterior II,, with i.i.d. data (Y;, X;);
Yi| X;, B ~ Bern (sigmoid(X7'8)) B~ Ny (o, g (XTX)”)

Assume (X ;)i are i.i.d. random variables with zero mean, unit
variance, and a finite fourth moment.

Suppose M-H is (py,, M,,) geometrically ergodic each n with a
RWM proposal 6; ~ N(0;_1,hly).
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Example: Bayesian Logistic Regression with Zellner's g-prior

Proposition (Proposition 5 [Brown and Jones, 2022])
Suppose n — oo with d,/n — v € (0,1). Then w.p. 1 and large n,

1

e

1_pn§

Choose h  1/(dn) or lim,, 4, p, = 1 can be rapid!
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Numerical Simulation

m Generate repeatedly 50 times artificial data with increasing
dimensions d,n = 4d: (d,n) € {(2,8),...,(14,56)}.

m Use optimization and Monte Carlo to estimate A(3}) and
lower bounds.

m h=.6,2.382/d,1/(dn).

1.0 0
2
=] 5’
2 =
+ 08 3 s
[ Q
2 IS
f, i 3—10
&8"° —-— h=2.38%d ]
] == h=1/(dn) g
S04 g
o
§ ; — h=.6
S0 S 50 —=— h=2.38%d
o — - —== h=1/(dn)

(2,8) (4,16) (6,24) (8,32) (10, 40) (12, 48) (14, 56) (2,8) (4,16) (6,24) (8,32) (10, 40) (12, 48) (14, 56)
The dimension and sample size: d, n The dimension and sample size: d, n
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More General Lower Bounds Under Concentration

Suppose conditions (roughly speaking) on m,:
m local Aal—strongly convex condition
m strict maximum

m sufficient tail decay

Suppose M-H with general proposal 6, ~ N(u(6;—1), hC) (i.e.
RWM, MALA, Riemannian manifold MALA [Girolami and
Calderhead, 2011)) is (pn, My, )-geometrically ergodic for each n.
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Lower Bounds Under Concentration

Proposition (Proposition 6, 8, [Brown and Jones, 2022])

Under conditions on m, and d,, < n", k € (0,1), then for large
(n,dy),

A \2 2
1—pn< (22 S — 1
Lo <nh> det(C)1/2 (1)

m For a large class of proposals, if h,C' do not depend
carefully on n, then lim, 4.) o pn = 1 rapidly!

m Similar bound holds for any bounded proposal.
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Application: Flat prior Bayesian logistic regression

Consider m,, for the model with i.i.d. data (Y;, X;); with ||.X;[[, <1
w.p. 1

Y;|X;, B ~ Bern (sigmoid(XiTﬁ)) g1

Suppose M-H with RWM proposal 8, ~ N(0;_1,hly) is
(pn, My,)-geometrically ergodic.

Theorem (Theorem 3 [Brown and Jones, 2022])

In fixed dimension d and under conditions so the target exists [Chen
and Shao, 2000] and the MLE is consistent w.p. 1 and X u # 0 if
u # 0. There is a A\g > 0 such that w.p. 1, for large n,

1-pn<2(=] .
6

Can choose h « 1/n to avoid lim, p, = 1.
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Numerical Simulation

m Generate repeatedly 50 times artificial data with
(d,n) =€ {(10,100), ..., (10,400)}.
mh=.1,5/n1/n,.1/n

=
o

0.8-

o
o

|

Convergence rate lower bound
Log acceptance probability
1
~

......... h=.1/n
(10, 100) (10, 200) (10, 300) (10, 400) (10, 100) (10, 200) (10, 300) (10, 400)
The dimension and sample size: d, n The dimension and sample size: d, n
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Comparison to Spectral
Methods



Comparison to Spectral Methods

Proposition (Proposition, Proposition 8 [Brown and Jones,
2022))

If P is reversible and there is a p € (0,1), for every p with
du/dll € L*(I1), there is a M, > 0 such that

Wik (P, TT) < Myp".
If A(-) is upper semicontinuous, then

1 — inf A(0) < p.
2 A0 <0

Based on previous results [Hairer et al., 2014]
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Summary

Choose tuning parameters carefully!

Manuscript is on arXiv (submitted to Annals of Statistics):
https://arxiv.org/abs/2212.05955
m Developed similar general lower bounds in both total
variation and Wasserstein distances in terms of the acceptance
probability.
m Studied applications in Bayesian logistic regression for
choosing tuning parameters which scale to large problem sizes
to avoid the convergence rate rapidly tending to 1.
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