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General setting

We have a high-dimensional target distribution Π on Rd possibly
depending on large data of size n (e.g. Bayesian posteriors) with
Lebesgue density π > 0 on Θ ⊆ Rd.

We want to generate representative samples θt, . . . , θt+T−1 from Π
to approximate expectations (e.g. predictions and inference in
Bayesian statistics)

1

T

T−1∑
s=0

f(θt+s) ≈
∫

f(θ)π(θ)dθ.
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The Metropolis-Hastings independence sampler

With π known up to a normalizing constant, generates
θt ∼ P t(θ0, ·) using a proposal density q by sampling θt|θt−1

θt =

{
θ′t, if ut ≤ π(θ′t)q(θt−1)

π(θt−1)q(θ′t)

θt−1, else

where θ′t ∼ Q and ut ∼ Unif(0, 1).

Figure: Arianna Rosenbluth, Nicholas Metropolis, Keith Hastings, and
Luke Tierney
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Convergence rates in TV

Let ϵ∗ = infθ q(θ)/π(θ). The upper bound is known [Tierney, 1994]

sup
θ

∥∥P t(θ, ·)−Π
∥∥

TV ≤ (1− ϵ∗)t.

The rate is exact rate in total variation [Wang, 2022] and the
same for every initialization θ.
Only studied a trivial example (exponential distribution).
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Geometric Ergodicity Can be Slow to Converge

Convergence can be slow if 1− ϵ∗ ≈ 1.
Generated samples are not trustworthy
Suggests unreliable estimators
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Exact convergence rates in
Wasserstein distances
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Motivation

Wasserstein distances appear to scale better in high dimensions
[Hairer et al., 2014, Qin and Hobert, 2021b,a].

Can we find a specific initialization θ and convergence rate 1− ϵθ
which scales in high dimensions / big data problems?

Mathematically:

W∥·∥∧1(P
t(θ, ·),Π) ≤ (1− ϵθ)

t < (1− ϵ∗)t
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Exact Convergence in the Wasserstein distance Wρ

Theorem (Theorem 1, Brown and Jones [2021])

Let ϵ∗ = infθ q(θ)/π(θ). If q is l.s.c. and π is u.s.c., Θ is
sigma-compact, then

(1− ϵ∗)t inf
θ

∫
∥ω − θ∥ ∧ 1dΠ(ω)

≤ sup
θ

W∥·∥∧1(P
t(θ, ·),Π)

≤ (1− ϵ∗)t sup
θ

∫
∥ω − θ∥ ∧ 1dΠ(ω).

Holds for L1-Wasserstein distances with lower semicontinuous
metric ρ(·, ·) ≤ 1.
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Exact Convergence in the Wasserstein distance

Proposition (Proposition 1, Brown and Jones [2021])

If the point θ∗ satisfies ϵ∗ = q(θ∗)/π(θ∗), then

W∥·∥∧1
(
P t(θ∗, ·),Π

)
= (1− ϵ∗)t

∫
∥ω − θ∗∥ ∧ 1dΠ(ω).

Holds for general L1-Wasserstein distances with lower
semicontinuous metric ρ(·, ·).

9 / 16



Convergence rate at every initialization

Theorem (Theorem 3, Brown and Jones [2021])

Suppose π, q are locally ∥·∥-Lipschitz continuous and bounded on
Rd and a point θ∗ satisfies ϵ∗ = q(θ∗)/π(θ∗). Then for any
initialization θ ∈ Θ, the Wasserstein convergence rate is the same
with

lim
t→∞

W∥·∥∧1(P
t(θ, ·),Π)1/t = 1− ϵ∗.
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Applications
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Bayesian generalized models

With a Gaussian prior N(0, α−1C), ,consider
Bayesian logistic and probit regression
Bayesian negative-binomial regression
Bayesian Poisson regression

Corollary (Corollary 1 Brown and Jones [2021])

Using a "centered Gaussian proposal" Q ≡ Nd(β
∗, α−1C) where

β∗ is the maximum of the posterior density,

W∥·∥∧1
(
P t(β∗, ·),Π(·|X,Y )

)
= M0 (1− ϵ∗)t .

where M0 =
∫
∥β − β∗∥ ∧ 1dΠ(β|X,Y ).

Holds for general L1-Wasserstein distances.
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High dimensions and large data
application
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High-dimensional Bayesian logistic regression

Assume:
Yi|Xi, β ∼ Bernoulli

(
S
(
βTXi

))
and Xi ∼ Nd(0, σ

2n−1Id).
tr(C) → s0 as d → +∞.

Theorem (Theorem 4, Corollary 2 Brown and Jones [2021])

if d, n → +∞ with d/n → γ ∈ (0,∞), then almost surely

lim sup
d,n

W∥·∥∧1
(
P t(β∗, ·),Π(·|X,Y )

)
≤ M0(1− exp(−a0))

t

where a0 > 0 is known and
M0 = lim supd,n

∫
∥β − β∗∥ ∧ 1dΠ(β|X,Y ).

Generalizes under technical conditions on the likelihood.
Holds for general L1-Wasserstein distances.
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Limitations
We observe if d/n → γ is large, the number of iterations needed to
approximately converge may still increase rather rapidly!
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Figure: The limiting decrease in the Wasserstein distance using different
values of γ, the limiting ratio of the dimension and sample size, versus
the number of iterations.
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Summary

We showed the exact convergence rate in Wasserstein
distances weaker than total variation matches the
convergence rate in total variation for every initialization.
We showed many non-trivial examples of exact convergence
rates in Bayesian statistics.
Despite this, we showed convergence rates can scale to large
problem sizes using a novel proposal and exact convergence
analysis
First known Metropolis-Hastings algorithm to upper bound the
convergence rate when d, n increasing together.
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