Exact Convergence Analysis for Independence Samplers in Wasserstein Distances

Austin Brown¹ with Galin L. Jones (University of Minnesota)

Reseach Fellow at the University of Warwick, Coventry, United Kingdom

July 5, 2023

¹austin.d.brown@warwick.ac.uk

General setting

We have a high-dimensional target distribution Π on \mathbb{R}^d possibly depending on large data of size n (e.g. Bayesian posteriors) with Lebesgue density $\pi > 0$ on $\Theta \subseteq \mathbb{R}^d$.

We want to generate representative samples $\theta_t, \ldots, \theta_{t+T-1}$ from Π to approximate expectations (e.g. predictions and inference in Bayesian statistics)

$$\frac{1}{T}\sum_{s=0}^{T-1}f(\theta_{t+s})\approx\int f(\theta)\pi(\theta)d\theta$$

The Metropolis-Hastings independence sampler

With π known up to a normalizing constant, generates $\theta_t \sim P^t(\theta_0, \cdot)$ using a proposal density q by sampling $\theta_t | \theta_{t-1}$

$$\theta_t = \begin{cases} \theta'_t, & \text{if } u_t \leq \frac{\pi(\theta'_t)q(\theta_{t-1})}{\pi(\theta_{t-1})q(\theta'_t)} \\ \theta_{t-1}, & \text{else} \end{cases}$$

where $\theta_t' \sim Q$ and $u_t \sim \mathsf{Unif}(0, 1)$.

Figure: Arianna Rosenbluth, Nicholas Metropolis, Keith Hastings, and Luke Tierney

Convergence rates in TV

Let $\epsilon^* = \inf_{\theta} q(\theta) / \pi(\theta)$. The upper bound is known [Tierney, 1994]

$$\sup_{\theta} \left\| P^t(\theta, \cdot) - \Pi \right\|_{\mathsf{TV}} \le (1 - \epsilon^*)^t.$$

- The rate is exact rate in total variation [Wang, 2022] and the same for every initialization θ.
- Only studied a trivial example (exponential distribution).

Geometric Ergodicity Can be Slow to Converge

Convergence can be **slow** if $1 - \epsilon^* \approx 1$.

- Generated samples are not trustworthy
- Suggests unreliable estimators

Exact convergence rates in Wasserstein distances

Motivation

Wasserstein distances appear to scale better in high dimensions [Hairer et al., 2014, Qin and Hobert, 2021b,a].

Can we find a specific initialization θ and convergence rate $1-\epsilon_\theta$ which scales in high dimensions / big data problems?

Mathematically:

$$\mathcal{W}_{\|\cdot\|\wedge 1}(P^t(\theta,\cdot),\Pi) \le (1-\epsilon_{\theta})^t < (1-\epsilon^*)^t$$

Exact Convergence in the Wasserstein distance $\mathcal{W}_{
ho}$

Theorem (Theorem 1, Brown and Jones [2021]) Let $\epsilon^* = \inf_{\theta} q(\theta) / \pi(\theta)$. If q is l.s.c. and π is u.s.c., Θ is sigma-compact, then

$$(1 - \epsilon^*)^t \inf_{\theta} \int \|\omega - \theta\| \wedge 1 d\Pi(\omega)$$

$$\leq \sup_{\theta} \mathcal{W}_{\|\cdot\| \wedge 1}(P^t(\theta, \cdot), \Pi)$$

$$\leq (1 - \epsilon^*)^t \sup_{\theta} \int \|\omega - \theta\| \wedge 1 d\Pi(\omega).$$

■ Holds for L_1 -Wasserstein distances with lower semicontinuous metric $\rho(\cdot, \cdot) \leq 1$.

Exact Convergence in the Wasserstein distance

Proposition (Proposition 1, Brown and Jones [2021]) If the point θ^* satisfies $\epsilon^* = q(\theta^*)/\pi(\theta^*)$, then $\mathcal{W}_{\|\cdot\|\wedge 1}\left(P^t(\theta^*,\cdot),\Pi\right) = (1-\epsilon^*)^t \int \|\omega-\theta^*\|\wedge 1d\Pi(\omega).$

• Holds for general L_1 -Wasserstein distances with lower semicontinuous metric $\rho(\cdot, \cdot)$.

Theorem (Theorem 3, Brown and Jones [2021])

Suppose π, q are locally $\|\cdot\|$ -Lipschitz continuous and bounded on \mathbb{R}^d and a point θ^* satisfies $\epsilon^* = q(\theta^*)/\pi(\theta^*)$. Then for any initialization $\theta \in \Theta$, the Wasserstein convergence rate is the same with

$$\lim_{t \to \infty} \mathcal{W}_{\|\cdot\| \wedge 1} (P^t(\theta, \cdot), \Pi)^{1/t} = 1 - \epsilon^*.$$

Applications

Bayesian generalized models

With a Gaussian prior $N(0, \alpha^{-1}C)$, ,consider

- Bayesian logistic and probit regression
- Bayesian negative-binomial regression
- Bayesian Poisson regression

Corollary (Corollary 1 Brown and Jones [2021])

Using a "centered Gaussian proposal" $Q \equiv N_d(\beta^*, \alpha^{-1}C)$ where β^* is the maximum of the posterior density,

 $\mathcal{W}_{\|\cdot\|\wedge 1}\left(P^t(\beta^*,\cdot),\Pi(\cdot|X,Y)\right) = M_0\left(1-\epsilon^*\right)^t.$

where $M_0 = \int \|\beta - \beta^*\| \wedge 1d\Pi(\beta|X, Y)$.

■ Holds for general *L*₁-Wasserstein distances.

High dimensions and large data application

High-dimensional Bayesian logistic regression

Assume:

• $Y_i | X_i, \beta \sim \text{Bernoulli} \left(S\left(\beta^T X_i \right) \right) \text{ and } X_i \sim N_d(0, \sigma^2 n^{-1} I_d).$

•
$$tr(C) \to s_0$$
 as $d \to +\infty$.

Theorem (Theorem 4, Corollary 2 Brown and Jones [2021])

if $d,n \to +\infty$ with $d/n \to \gamma \in (0,\infty),$ then almost surely

 $\limsup_{d,n} \mathcal{W}_{\|\cdot\|\wedge 1} \left(P^t(\beta^*, \cdot), \Pi(\cdot|X, Y) \right) \le M_0 (1 - \exp(-a_0))^t$

where $a_0 > 0$ is known and $M_0 = \limsup_{d,n} \int \|\beta - \beta^*\| \wedge 1d\Pi(\beta|X, Y).$

- Generalizes under technical conditions on the likelihood.
- Holds for general *L*₁-Wasserstein distances.

Limitations

We observe if $d/n \to \gamma$ is large, the number of iterations needed to approximately converge may still increase rather rapidly!

Figure: The limiting decrease in the Wasserstein distance using different values of γ , the limiting ratio of the dimension and sample size, versus the number of iterations.

Summary

- We showed the exact convergence rate in Wasserstein distances weaker than total variation matches the convergence rate in total variation for every initialization.
- We showed many non-trivial examples of exact convergence rates in Bayesian statistics.
- Despite this, we showed convergence rates can scale to large problem sizes using a novel proposal and exact convergence analysis
- First known Metropolis-Hastings algorithm to upper bound the convergence rate when *d*, *n* increasing together.

References I

Austin Brown and Galin L. Jones. Exact convergence analysis for Metropolis-Hastings independence samplers in Wasserstein distances. *preprint arXiv:2111.10406*, 2021.

- Martin Hairer, Andrew M. Stuart, and Sebastian J. Vollmer. Spectral gaps for a Metropolis–Hastings algorithm in infinite dimensions. *The Annals of Applied Probability*, 24:2455–2490, 2014.
- Qian Qin and James P. Hobert. On the limitations of single-step drift and minorization in Markov chain convergence analysis. *The Annals of Applied Probability*, 31(4):1633 – 1659, 2021a.
- Qian Qin and James P Hobert. Wasserstein-based methods for convergence complexity analysis of MCMC with applications. To appear in *Annals of Applied Probability*, 2021b.
- Luke Tierney. Markov chains for exploring posterior distributions. *The Annals of Statistics*, 22:1701–1728, 1994.

References II

Guanyang Wang. Exact convergence analysis of the independent Metropolis-Hastings algorithms. *Bernoulli*, 28(3):2012 – 2033, 2022.